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ABSTRACT

It is pointed out that insight into the threshold region of
electron-atom ionization can be gained by examingtion of the nature
of the doubly excited states of the compound ion. A study of these
states for H has been initiated with two types of variational wave
functions. One, yw, has the two electrons at roughly equal distances
from the nucleus; the other, YD’ has one electron at a very much
farther distance such that it sees the dipole potential caused by the
inner electron and the nucleus. Both functions are constructed to be
eigenfunctions of the operator QN’ which projects out all states of
the target of principal quantum number less than N, end renders the
energy subject to a minimum principal. If the number of states
for which YW yields a lower energy then YD is proportional to Nqﬁ then

an extrapolation argument shows that the threshold yield curve
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will be effectively proportionsl to E ~ Y2 Galculations
have becn done to N = 5 for ¥p and N = 9 for YW. Only the
lowest of the YW states is lower than the corresponding Yb state.
The results suggest v in the range 0 < v < 1/2. Some comments
on Wennier's theory of ionization are made.
I. INTRODUCTION

The theory of low energy electron impact ionization of atoms
by electrons is fraught with difficulties from begining to end.
The difficulties are both mathematical and conceptual in nature.
The mathematical difficulties derive from the long raenge nature of
the Coulomb potential combined with the intrinsically three-body
nature of the wave function in the final state. In almost all
cases, however, these problems are related to conceptusl questions
of immediate physical significance. If the two electrons come away
from the nucleus or residuel ion (considered an infinitely heavy
point charge and always referred to as the nucleus) with approximately
equal and opposite velocities, then it is a reasonable argument that
each electron sees the nucleus directly and that classical mechanics
can be appliedl. The point here, of course, is the virtual identity
of Coulomb scattering in classical and quantum mechanics and the fact that
the classical approximation becomes more exact as the energy gets lower.
If on the other hand the electrons come off with quite different
velocities, the validity of classical mechanics is a much more

questionable item. Here the quantum mechanical argument is that the
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inner electron may shield the outer electron from the nucleus
thereby making the potential it sees shorter range than Coulombic.
In that case its behavior may not be governed by classical
mechanics and the classical approximation may get poorer as the
energy is lowered?.

It is the purpose of this paper to examine some of these
questions from a consistently quantum mechanical point of view.
We shall attempt to avolid questions concerned with the controversial®
asymptotic form above threshold®’ # by considering the process as
a continuation of real or virtual processes below threshold. It
also allows calculations to be done in a fairly unambiguous way.
We believe that this is the most important aspect of our work, for
if any question be raised concerning the variational forms of our
wave functions the way has been opened for other forms to be proposed
and tested on the impartial balance of quantitative comparison. The
one question that this approach can probably not answer is any subtle
questions of analytic continuation from negative to positive energies.
We shall be more detailed concerning what effects we believe this can
have in Section III; for the present it is only relevant to note that
the one advantage of the Coulomb force is that the continuum solution
merge continuously with the discrete solutions. Thus if we correctly
describe the major physical situations that can occur below threshold,

then we can be reasonably sure that what we extrapolate them to be



must be substantislly correct.

What are the physical processes which extrapolate to
ijonization? They are of two types: (1) Inelastic processes in
which the orbital electron is raised to a highly excited state N
with N finally going into continuum. (2) Double excitations in
which both particles can be considered similtaieously caught in an
excited "‘bound" state, also characterized by the principal quantum
number N, where again N finally goes into the continuum. Whereas
the former are real both in the sense that they occur at energies
above the energy necessary to excite the Nth level and the processes
correspond to rigorous time independent solutions of the Schr¥dinger
=quation, the double excitations processes can be considered virtual
in as much as they occur below threshold and they do not correspond
to rigorous time independent solutions of the Schrbdinger equation®.
Nevertheless they do occur, and they can have a profound effect on the
scattering both below and above the thresholds in question.

Our approach will be to use the double excitation processes to
gulde us in the choice of final state wave functions that we use,
but the actual derivation of the threshold law will be carried out
via (1). In Section II we deal with doubly excited state calculatl ons
and in Section III with the derivation of the threshold. One of the
forms of the doubly excited wave function has been motivated by

Wannier's theory of ionization! according to which the threshold law




is dominated by processes in which the energies and the radial
distance of the escaping electrons are not too different from each
other. In Section IV we discuss his theory a little more and point
out that his derivation cammot be Justified in a completely classical
theory of electron-atom (or ion) ionizationm.

It turns out that the scattered particle must see at the very
least an r 2 potential. This causes a change in the continuum
normaelization factor of the scattered wave which makes it more like
a Coulomb wave. This normalization factor is derived in the appendix;
but it is also indicated there that the normalization factor notwith-
standing, the ionization in such a potential should have an energy
power dependence less dominant than that of a pure Coulomb wave.

II. DOUBLY EXCITED STATES OF H .

We shall calculate doubly excited (i.e., autoionization) states
of H . There are two reasons for dealing with this negative ion:
first it is the simplest negative iog, but more important the eigen-
functions of the target atom ere know exactly and therefore we can use

6 7 yithout epproximation. Also following

the Q-operator technique
Wannier! we shall deal with only total S-states in the belief that
threshold law cannot be altered in form by higher angular momentum

states.
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The two wave functions which we use ared.

N -1
R (r) Ry (ra)
YV(IN) =) S vfl RNf:a Pyleos 6,50 5 v 2 ¥ (2.1)
2 =0

and

(M) Yo ) v L) R (ra)

¥yt NI z By M 2 (-l)L/E—sz(cos 8, (2.2)

-0 T2 |

The physical meaning of \yy(JN)

the two electrons in doubly excited states at roughly equal radial

is easlly understood, it describes

distances from the nucleus. (We asume v ~ N). The functions RNz(r)
are r times the radial hydrogen wave function. The angular
correlations indicated by the electron-electron repulsion are taken
up by the linear variational perameters C g of which N - 1 are
effectively free and one is determined by normalization. Physically
it is clear that the calculation will make them such as to Vconcentrate
the electrons on opposite sides of the nucleus. It is also clear

that for neither particle does this function contain states of

hydrogen with principal quantum less than N. I.e, for i -1, 2




()
f R 1) Yy(0g) ¥y ey < 0 (2.3)
n <N

A< 4<N-1

Thus the function is an eigenfunction of the QN operator® and
variational calculations will give eigenvalues which if they lie
below the Nth state. of the hydrogen atom will correspond to
resonances in the elastic and inelastic channels.

Although the physics of YD(NJ) is also readily understood, the
mathematics needs some explanation. The following is a precis of
Mittleman'slO generalization to arbitrary N of the analysis which
Temkin and Walkerl! have given for the N _ 2 state. Let us start

with the following ansatz for the closed channel wave function:

-1 ' '
™ _§ uyy(r) Ry,(r2) (D4 /BTTT R (cos 6,,) |, (2.4)
£=0 r rs

The functions uy z(r) are to begin with undetermined functions. [The
factor (-l) 1{/21, + 1) is the essential part ‘of the Clebsch-Gordan

coefficient by which Y m(Ql) and Y _(02)

L - couple to form Pz(cos 6,,)]-
If one varies the uh'!, in the expression for expectation of the energy,

then one arrives at coupled differential equations whose longest
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range terms are of the order r 2 and to that order the equations

may be written

(V)
[Eif - B . e] U(N) =0 (2.5)
dr2 I'2

(W) (N)

U is a column vector of the Uy 2 and B is a tridiagonal

symmetric matrix whose elements are given by:

Z _ 2
B(N') - (g +1) 5 1 o4 5Nf'l Ne -~ 2= 5 .
24 r2 22 Be'2 -1 L+ 1, 2

N2 - ;2 (2.6)
Ng/J ——= 2.
+3£lu,2_16!" &1

Introducing the transformation

v _ (W) (w) (2.7)

’ -1
such that B(N) B(N)B(N) is diagonal, we find that the components of
| (x)

the column vector V satisfy the equation

> b
[ : 2 _Ng * em]"m(r) =0, J =1, 2 --, N, (2.8)
dr r
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where ijare the eigenvalues of B(N) . Let Bg) be the associated

(N

eigenvectors, then the function v ) of Eq. (2.4) takes on the
’ D

form of Eq. (2.2) and acquires an additional "qpantum" number J which orders

()

the sequence of eigenvalues of B and their corresponding eigenvectors. -
Of the N eigenvalues ij a certain number, j -1, 2, --, JD’

will be negative and for those functions the equations will asymptotically
contain an attractive r 2 potential. For each N and j the equations
will contain an infinite number of negative eigenvalues which to

an excellent approximations are related bylo

(S + l)l = een/del

!eNJ (s)l; Sal, 2, vou, (2.9)

eNJ
where

, 1/2
%Ny T [leJ| - 1/4] (2.10)

"The solutions of those'equations are Hankel functionslls 12

l1/2 1/2r).

H (ile r) which asymptotically approach exp(-leN |
lo[N Nj J

J
At short distances equation (2.8) becomes altered and essentially
non-local in character. In fact the attractive r 2 potential must
became less singular, for the r 2 solutions are not regularly behaved

at the origin.
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For variational purposes we have taken
q

v (r) = ™8 E: Cm?m . (2.11)
m

In order that Y(Nj)

D be an eigenfunction of QN it is necessary that

f VNJ(r) Rnx(r) dr = 0, n<?¥

(¢]

(2.12)
A<N-1

Note that the QN operator is symmetric’. Although the form of
ygud) as 1t stands appears to contain no bound states of lower N
for the target particle (2?), it might contain lower states in the
exchanged coordinate (EJ)' In order that the calculation be-
subJect to a minimum principle the possibilities of ordinary
exchange inelastic scattering from a state lower than N must also

be excluded. Eqgs. (2.12) garantees this to be the case. They

are a set of ¢ - 1 linearly independent equations where
Q=1 ,N©N-1)/2, (2.13)

If the VNJ(r) contains exactly q terms, then together with normal-

ization a&ll the coefficients are unique functions of a. Thus

for variational purposes the function YENJ) contains only one
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variational parsmeter, a, as opposed to YéN) which, as was stated,

contains N - 1 parameters. It is very ilmportant © realize, because
the W and D calculations are based on the same QN operator, that the
shifts AQ are the same and therefore can be omitted in the comparison

of the respective energies that will be made (Table III).

()

The matrices B were inverted for all N _ 2 to N . 100.
The number of negative eigenvalﬁes is clearly linear with N as
is evident from Figure 1 in which JD is plotted as a function

of N. In fact it is quite certain that

Iy = % N - (lower order in N), (2.14)

where the term in brackets may very well be logarithmic. The
eigenvalues themselves appear to go up quadratically with N.
Selected values are given in Table I. The differences are seen
to be proportional to N and independent of J for the lower values.
In fact the ij can be fit to a reasonable approximation by a
formula of the form:

by £ 3 NZ 4 B(3) - N 4 c(J) (2.15)

Some feel for the eigenvectors B can be gleaned from

(W)
£J
Tgble IT. There it can be seen that aside from a normalization
constant Nl/2 the eigenvectors are fairly independent of j for

small g and that they get extremely small four large £ as long es
J is small. For large J they lend to oscillate and they are all

of the same order of magnitude.
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The significance of these properties will emerge in next
sections in which we utilize these properties to derive an effective
threshold law. We shall also discuss there the significance of the
results of the variationsl calculations. The results themselves
are summarized in Table IIT.

IIT. IMPLICATIONS FOR THRESHOLD IONIZATION

It may appear that the variastional wave functions we have
used, in particular YW’ are overly restrictive and that specifically
if we had used shielded Coulomb radial wave functions we would have
found more energies of the two Coulomb type (EW) lower than their
dipole (ED) counterparts. (This number is indicated by gy in
Table III.) We do not believe this to be the case for the following
reasons. The number of variational parameters in YW goes up as N,
therefore one has more freedom to simulate the effects of shielding
should this have been required. To test this point even fufther
we have varied v in YW away from N. The effect of this change can be
described as meking the mean radial distances of the electrons be
slightly different from each other, and thus to give partial shielding
more room in which to operate. The results are summarized in Table IV.
It can be seen that in only one case does it reduce an eigenvalue
(v = 10, N = 9) and there only the lowest one (which was lower
than ED anyhow). Its effect on all higher eigenvalues is to raise
them, and in fact in only one case does the second eigenvalue remain

. bound.
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Furthermore it must be added that the function ¥ (for v _N)
is explicitly symmetric whereas YD is not. Although we do not
expect this to be a significant factor for large N, Table III
shows that it can have a significant lowering effect for small N.
Finally we reiterate that YD only depends on one variational
parameter. Thus to the extent that this calculation is biased,
it predominantly favors the two Coulomb functions YW' This is
intentionally done to offset any criticism that we were intuitively
drawn to the shielding approximationz.

Thus it is the calculati ons themselves which convinecingly
demonstrate that the Tb functions damninate. In other words in
double excitation the electrons tend to be at greatly dissimilar
distances from the nucleus. For example the second autoionization
state of the N —~ 5 calculation has a mean radius of r, at approxi-
mately 37 a, whereas 5;': 136 a,- This in turn can be described
as the direct effect of shielding of the outer electron from the
micleus by the immer electron®.

The threshold law for ionization, however, will be determined

by those few states in which the electrons emerge at comparable

distances from the mucleus. The present calculation clearly shows

that such equal energy events can occur. In order to extrapolate a

threshold law from the present results we shall proceed as follows! 3.

To every two-Coulomb autoionization state below the Nth threshold

we shall associube ain inclastie scattering wave function above the
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Nth threshold in which the inelastically scattered particle will

also be described by a Coulomb wave. This wave function may be

written
N -1
F(kyr, ) Ry, (r2)
£
Wy = TE % g T Tyl o) o)

The index J here labels the state of the YW calculation whose
energy is lower than the corresponding J state of the ¥p calculation.

In general then

J=1,2, ..., d, (3.2)

Although for the results presented in Table III JW <1, it must
be assumed that as N gets larger, JW will also. We shall assume

that asymptotically for large N, JW can be represented as

1im JWc:NY, O<ysl

N o (3.3a)

The function XN3° however, is an inelastic scattering wave

function, and kN is wave number of the inelastically scattered
wave.. The cross section for excitation of the Nth state is

given by
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JW
"N:sz | < xe | V1] >|2 (3.4)
: Nj i
J=1
where Qi is the initial state and V is the interaction:
[ ik -+ (] sin kr, Rlz(rg) (5.5)
§. =L e~ =~ o (rz S 3.5
i o] S wave kr1 rs
2 2
Voo - — (3.6)
I Tie

(Rydberg units are used throughout).

We define the yield to a group of states in the vicinity of the

Nth state as Q (not to be confused with the projection operator

U
N +« AN

Q = y O'N (3'7)
N - AN

Now if the energy of the hydrogen atom is labelled w(N), then

W) - - = (3.80)
N2
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the total energy being given by

E = sz W . (3.8p)

When N is large, we can replace the sum in (3.7) by an integral:

Q- oyt « [ oyi®aw (3.9)

The matrix element in (3.4) can be written explicitly

w

oyl V1 &> =) Ojfdrldrz Py ) Oy g1 ) <'2'2%3 X
4=

r<z
r %t .
>

RNz(rz)

R, g (r2) (3.102)

14 -
The normalization factor of RNL is proportional to N 5/2.

(W)

Since there are N terms in XNJ,the coefficients CNLJ like the sz s

Teble II, must be proportional to N~ 1/2.

The normalization of
F(ker) at the origin, corresponding to unit current at infinity14,
is kN- 1/2; the sum of integrals over g converges very ra.pidly'13
and is quite independent of the upper limit. We therefore have

<3 Ivie > o —t (3.10b)

Jig W2
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We shall assume that the dependence on J for N large is

secondary, as with the coefficients b of Eq. (2.15) so that

NJ
the sum over j in (3.4) contributes’® a factor J,. Eq. (3.9)
W

then leads to

Qo [rp[ 1 'f 3, Noaw (3.11)

N2

Using (3.3) for J.» inverting (3.8a) in the form N e | w |~ 1/2,
and proceeding into the continuum wherein w is positive and
0 < w < E defines the range of integration, we find that
Q «I w oD (3.12)
o]
Thus finally
2=
Q«xE 2 (3.13a)

In order to say something about the value of ., we have
plotted in Fig. 2 the results we have obtained as a function of N.
The solid straight line is the same as that in Fig. 1 in the
restricted range of N. It represents JD and therefore is an average

of the squares; although it locks somewhat arbitrarily drawn here,
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Fig. 1 shows that when one goes to larger N there is essentially
no ambiguity in it. Similarly the curved lines are intended to
represent an average through the open circles (JW vs. N). There
are not enough open circles to allow such a curve unambiguously
to be drawn, however as with JD we expect that going to larger N will
allow this curve to be essentially uniquely continued. The limited
results do seem to fit better with the smaller fractional value of
v+ Further discussion is reserved for the next section.
IV. DISCUSSION

Let us examine some of the assumptions that have gone into the
derivation of Egs. (3.13a). Aside from the analytic continuation
into the positive energy damain, the biggest assumption concerns the
summation over J in (3.4). We have indicated in footnote 15 that
the only error this could reasonably cause is an increase in the
exponent in (3.13a). To that extent the exponent égié;;i_j> may
be a lower bound on the exponent, which would be gquite satisfactory
for our purposes. We believe, however, that it is more accurate
than that. The process of analytic cantinuation which is used in going
from (3.11) to (3.12) together with the restricted analytic form used
to represent JéN) may have lost more subtle energy dependent factors
such as log E or oscillating factors. From most practical points
of view logerithmic terms are not important, since they are completely
dwarfed by the power dependent factors; if the factors are osaillating,

then we would expect (3.13) to describe the envelope of the curve.
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The smallness of Jw in the present calculation might be in interpreted to
mean either that . is small or that the constant of proportionality is
small in (5.5a). We believe that it is the former which is more suggested by
our results, for otherwise one wouldn't have expected JW(N) tobel at N_ 3
and then to remain there to at least N - 7. Rather one would have expected
JW only to become 1l at a larger value of N. It is for this reason that the

agreement of JW with a fractional power dependence in Figure 2 appears to fit the

limited results so naturallvy. Note also from Table III that JW cannot exceed

2 for N < 9.
Nevertheless it will clearly require much larger N in order for a precise

value éf v to be determined. Although we are in the process of extending
this calculation, we can not promise that results will be forthcoming soon.
It will require considerably more numerical sophistication to avoid overflow
and cancellation of significant figures. (The computer is an IBM 360-91 with
approximately 15 significant figure accuracy.)

On the basis of Figure 2 we would estimate O < y < 1/2. Indeed the most
likely alternate possibility in our opinion would be a logarithmic increase

of J with N,

J; «log N (3.3b)

This would change the form of the threshold law to:
Q2 10g B (3.13b)

Although we think it is unlikely, our results are not extensive enough
to rule out Wannier's® +threshold law. (This would correspond to Y': 0.75.
A linear theory4 v = 1 seems distinctly improbable in our opinion). This
18

theory, which has recently been revived by Vinkalns and Geilitis ~ ,

is based on a rather brilliant analysis of the classical
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orbits (i,e. solutions of Newton's equations) which describe two
electrons emerging from the vicinity of the nucleus and not being
caught again. Basically Wannier finds for E zero or slightly

greater than zero that the solutions are of two kinds:

- /2
w2V (4.18)
AT = Co %+ w2 (4.1b)
where Ar is the difference of the radial distances of the two
electrons fram the nucleus (assumed fixed and of charge Z) and
r is the mean radius:
-/ o
r . r2 412, (4.2a)
X ) (k.2b)
AI‘ = 2 1‘1 - r2 F) -

and
L /100z -9
u: . . L]
2/ Thz -1 (4.3)

The first type of solution (4.la) can exist even at E _ O and it

corresponds to particles appearing at infinity with equal (necessarily




zero for E ~ 0) speeds. Geometrically similar solutions continue

to exist for E > O, thus the threshold dependence (increase in

the number of solutions) is determined by the increase with E

of solutions of the second kimd (4.1b). These correspond to events

in which theé two electrons come off with slightly different energies.
Wannier' has shown that the contribution of these to Q is proportional
to Co itself. To get the dependence of C; on E Wannier appeals to

8 similarity principle whereby if

T = fi(t) , 1=1,2 (4.4a)

is & solution of Newton's equations for energy E, then

1 1 3/2
r' =§r; (B/= ¢) (4.4p)
are (geometrically similar) solutions for energy E' - BE. The

solutions (h.lb) can be written as an explicit function of time

using the solution of Jjoint motion

T « t2/3, (4.5)

‘which is valid when B «< Zr~ l. This can then be consistently

inserted in (4.1b) (which itself is valid only when A r << r.).
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Letting Co “(E) be the maximum value of C, which leads to "double
escape'' at energy E, one finds that the corresponding solutions

(4.1v) can be written:

Armax(E) a Cz(max)(E) tl/2 + u/3 (4.1¢)

Applying (4.4b) then leads to the conclusion

1
E(E) «E 5 (4.6)

In Eq. (4.6) the (quasi ergodic) assumption has been made that all
initial conditions for particles entering the emergent zone are
essentially equally probable. From the remark above Bq. (k.4a) this

then translates itself into

Q «xE” /4 4 “/2, (%.7)

which is Wannier's threshold law'.

The key assumption in this theory, in our opinion, is expressed
in Eq. (%.6). We wish to show first that this assumption cannot be
Justified in a strictly classical theory of the whole ionization
process. In that case the cross section emerges as a statistical
average Of events in which the orbital particle is initislly bound.

(Radiation demping is necessarily excluded). The question one asks
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in ionization is what happens as the energy of the impinging particle
increases, the characteristics of the bound particles remaining the

same. In other words the variation with energy of the initial condiion

with energy does not satisfy the similarity principle, Egs. (4.4). But

Newton's equations in that case cover the whole collision process. In
other words if the orbits corresponding to the solutions (4.1) be

traced backward in time, it will be found that the overwhelming majority
of them originate in trajectories in which the two electrons were
originally approaching the nucleus from infinity. These are initial
conditions that must be excluded even from the most general type of
distribution used to describe the real initial conditions. Thus we
conclude that from a completely classical point of view the distribution
of Cg(max)(E) does not necessarily obey (4.6). It may be a very

very sensitive function of E (near threshold) and/or the result may

not depend on Co(E) alone but on C, as well; it may also depend on

the statistical distribution that one chooses to describe the initially
bound orbits. It is, then, perhaps significant that classical monte-carlo
celculations. do not reveall” the Wammier threshold law.

The same obJjection cannot a priori be raised against a quahtum
mechanical collision. For in that case the concept of an individual
orbit does not apply throughout the collision process. Nevertheless
the above consideration does raise the likelihood that the probability
with which particles emerge into the classical zone may also be a

highly sensitive funciion of E. We believe that this in fact is the case,
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since even if one cannot speﬁk in terms of orbits, the Hamiltonian
does remain the same throughout the collision. The assumption
would be more justified in our opinion in the problem of the
threshold production, say, of two negatively charged hadrons by
nucleon collisions with nuclei. In that case the short range in-
teractions only come into operation in the quantum mechanical zone,
and they are so strong and complicated that they can legitimately
be expected to make the final state completely oblivious to the
initial state.

In addition to this quasi-ergodic assumption there remains the
question of the validity of the classical theory. This is a very
difficult question which has not been definitively answered. We
believe that in the icnization of atoms by electrons the theory does
have some validity in the region (ar/r) << 1. However when the
difference in the two radial distances gets large,then we believe that
quentum effects (shielding) will have a profound role®. The present
results tend to bear out this reservation.

Finally we mention the experimental situation. Although an
experiment can never prove a threshold law, the experiment of McGowan
and. Clarke18 has convincingly shown that there is some nonlinearity
in the e - H lonization curve between threshold and 0.4 eV. For if
there were not then the measured position of the first resonance in

19
e - H elastic scattering would not coincide with essentially pre-
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cision calculations, which in our opinion can not seriously be
questioned. In the regionm 0.05 < E < 0.4 eV McGowan and Clarke

find very good agreement with Wannier's gt 127

law, but it is
perhaps (perhaps because the experiment is hardest there) significant
that below 0.05 eV the yield curve does appear more nonlinear. Brion
and Thomas®® in e - He ionization also find a yield curve which
appears to be more nonlinear than Wennier's law. Since the region
of nonlinearity is much greater there, this may provide a better
experimental test of the theory.
Appendix

In this appendix we shall derive the normalization factor for
a particle scattered in an attractive r 2 potential. We shall also

estimate its effect on the ilonization threshold.

The inelastically scattered wave satisfies the equation

[ |
I Z; * 1:2 i ] o) - 0 (A1)

It is important that this equation exclude regions near the origin;

2
this is evident from the genersl sclution of (A1)~

1/2 1/2
fy(r) = Ar JiaNj(k'Nr) + Br Ni"mg(r)’ (a2)
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which oscillates infinitely rapidly (and thus is unacceptable)

as r - 0. aNj is given by

T
oy =:/|ij |- T =a (A3)
Using the asymptotic form of the Bessel function for kNr >> aNJ
in (A2) gives
(Ak)
N 1 2" . iom
lim f . (r) = A/—— cos ( - =20 -y, B ——s1n< - ->
e M / ey yr > - & / Ty e =30 - §
We demand that fNj(r) be normalized to unit current, so that
. c
lim fNJ(r)zk sin (kgr + 6) , (A5)

T - o N

where C is independent for ky. Comparison of (A5) and (A4) shows
that A and B are proportional to k;l/g.

On the other hand A and B must also be related to the solution
for smaller values of r. To get this relation we must first rewrite
(A4) in a region where kT << oy but where the r 2 potential is still
operative. The function fNJ(r) can there be approximated by the small

argument expansion®® of the Bessel functions. I.e., for kNr << N3
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but r >,

(16)

£ (r) NArl/2<5§—> 1/2 {(1{1\1 cos (igm) (kNI)-ia

NJ = T + 1ig + sin (igm r(l + io) ~ (T - 1ig)

The radius at which the r 2 potential is no longer operative is
defined as T, Within this radius we assume that we can represent
the solution for whatever (in reality very complicated and nonlocal)

potential does exist as

fNj(r) = N£(r) (A7)

The quantity 7 is desired normalization factor. It can be determined
by equating the logarithmic derivative of (A6) and (A7) ar r _ r -

One finds to an excellent approximation

r 1/2
o
n= == (a8)
f(ro) ﬁLNCE' - Roro + Rozro 3
where
 (r
Ro:frlrzr (A9)
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In order to estimate the effect of this on the ionization
it is necessary to have some idea of the size of L A very
reasonable estimate of it is that radius at which the outer electron
is comparable to the mean radius of the inner electron T». (It cannot
be smaller for then it would no longer be the outer electron.) But

for a hydrogenic atom in the Nth state ¥, o« N9, thus it is clear that

as N gets large T, must also, hence

1
lim T -

= 1 (A10)
N e £ (x ) /2

1
(o)
Before proceeding let us note that for a finite N the factor k&l/g
in (A8) or (A10) is the same as one would have for a pure Coulomb
wave. It is this factor which is directly responsible for the finite
threshold behavior in electron impact excitation of hydrogen. This
simple fact which is the implicit basis of the original derivation
of this result by Gailitis and Damburg®' is somewhat obscure
in their paper as a result of their very elegant and very general
mathematical procedure.

To celculate the effect on the ionization we must replace F(ker)
in (3.1) by nf(rl) in view of the fact that the dominant contribution
to the matrix element comes from rp smell and r, comparable to rz.

In this case the sum (3.4) must be extended from j =1 to J = JD'
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Figure Captions

Figure 1. Jb vs. N. Both JD and N are defined

only on the integers.

Figure 2. Solid straight line is JD vs. N
representing the squares. The other
curves are various analytic fits of the
open circles to represent JW; The con-
stant of proportionality has been chosen

to be unity.




Table I: Selected values of -b

NJ
J\N(J‘D) 10(4) 20(8) 30(13) 40(17) 50(21)
1 262 1123 2584 4646 7307
2 187 971 2355 4339 6922
3 116 822 2128 L0325 6541
b h7.4 676 1905 3733 6162
5 533 168k 3435 5786
6 393 1466 3140 5413
7 256 1251 2847 5043
8 122 1039 2558 L676
9 831 2271 4312
10 625 1988 3951
11 423 1708 3593
12 225 1431 3238
13 29.3 1157 2886
14 886.3 2538
15 . 619.0 2192
16 355.2 1850
17 9.472 1511
18 1175
19 8h2.7
20 513.7

21 188.2
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Table III: Comparison of Energies (in ryd).

N g i e E } E(v-N)

T i S
2 1 0.2 -.01579" é -.00k0T 0
3 1 0.2 ~.00992 _.o1272 1
b 2 0.19 ~.00409 % -.00996
0.09 -.00012 >0 :
e o
o 0.11 -.0005 / >0 :

6 3 _ -.0656

.00030
>0
-.00017
>0

— 4 st mmr e o 4 s

'M:Béﬁﬂé e

(00]
W
t

.001k

—— y
AL B AR e STt % e @ A D WA v e TRMC T T S e 1 R am t e

<2

1
Q
(@]
|
=

\%
(@)

a. With symmetrization this value reduces to ED = =0.0375 at a = 0.25.

b. This mumber is inferred by extrapolation from the values of ED .



Table IV:
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The effect of varying v in YW

&)

Ny

Y lowest root second root

8 -.00345 -.001L41

9 -.00167 : >0
10 -.00046 >0
11 +.00015 >0

9 -.0020L -.00141
10 -.00292 -.0001k

11 -.00098 >0
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